687. A Comparison of the Apparent Dipole Moments of the Brominated Methanes dissolved in Benzene with the True Values determined as Gases.

By A. D. Buckingham and R. J. W. Le Fèvre.

New measurements provide the following values for $\mathrm{CH}_{3} \mathrm{Br}, \mathrm{CH}_{2} \mathrm{Br}_{2}$, and $\mathrm{CHBr}_{3}$, respectively: $\mu_{\text {gas }}=1.82,1.42,0.99$, and $\mu_{\mathrm{C}_{6} \mathrm{~B}_{6}}=1.61,1.41,1.02 \mathrm{D}$. The $\mu_{\mathrm{CH}_{\mathbf{H}}} / \mu_{\mathrm{gas}}$ ratios drawn from these figures fit the equations listed previously by Buckingham and Le Fèvre ( $J ., 1952,1932$ ) as Nos. 2, 3, and 4 better than they do No. 1.

This paper records measurements parallel to those on the chlorinated methanes (Barclay and Le Fèvre, $J$., 1950, 556) with a view to supplement information concerning small solute molecules (Buckingham and Le Fèvre, J., 1952, 1932; Harris, Le Fèvre, and Sullivan, J., 1953, 1622; Buckingham, Harris, and Le Fèvre, J., 1953, 1626). The results now obtained are summarised in Table 1 under the headings, and with the symbols, used before (see above references).

Table 1. Polarisations at $25^{\circ}$, and dipole moments.

|  | $\mathrm{CH}_{3} \mathrm{Br}$ | $\mathrm{CH}_{2} \mathrm{Br}_{2}$ | $\mathrm{CHBr}_{3}$ |  | $\mathrm{CH}_{3} \mathrm{Br}$ | $\mathrm{CH}_{2} \mathrm{Br}_{2}$ | $\mathrm{CHBr}_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{\mathrm{T}} P_{\text {gas }}$ (c.c. $)$ | $82 \cdot 5$ | $64 \cdot 3$ | $49 \cdot 8$ | $\left.{ }_{(T)} P_{\infty}\right)_{\mathrm{c}_{s} \mathrm{H}_{6}}$ | $67 \cdot 7$ | $63 \cdot 4$ | $50 \cdot 9$ |
| ${ }_{\mathrm{D}}{ }^{P}$ (c.c.) | $14 \cdot 7$ | $22 \cdot 9$ | 29.6 | ${ }_{\mathrm{D}} P$ (c.c.) | $14 \cdot 7$ | $22 \cdot 9$ | $29 \cdot 6$ |
| ${ }_{\mathrm{o}} P_{\text {gas }}$ (c.c.) | $67 \cdot 8$ | 41.4 | $20 \cdot 2$ | $\left({ }_{0} P_{\infty}\right)_{\mathrm{c}_{6} \mathrm{H}_{4}}$ | 53.0 | $40 \cdot 5$ | 21.3 |
| $\mu_{\text {gas }}$ (D) | 1.82 | $1 \cdot 42$ | 0.99 | $\mu_{\mathrm{C}_{6} \mathrm{H}_{6}}$ (D) | 1.61 | 1.41 | $1 \cdot 02$ |

## Experimental

Materials.-A B.P.C. sample of methyl bromide was dried by passage through phosphoric oxide, condensed, and redistilled before use, the middle fraction only being taken. Methylene dibromide (ex B.D.H.), after being dried ( $\mathrm{CaCl}_{2}$ ), had b. p. $97 \cdot 2^{\circ} / 755 \cdot 6 \mathrm{~mm}$. The bromoform, initially a B.P.C. specimen, was dried $\left(\mathrm{CaCl}_{2}\right)$ and fractionated; b. p. $144 \cdot 7-145 \cdot 0^{\circ} / 760 \mathrm{~mm}$. The solvent was prepared by partially freezing " AnalaR" benzene and storing the remelted solid over clean sodium wire.

Measurements on Gases.-The circuit shown as Fig. 3 of the paper by Le Fèvre, Ross, and Smythe ( $J ., 1950,276$ ) and the cell assembly illustrated by Le Fèvre, Mulley, and Smythe ( $J$., 1950, 290) were employed with methyl bromide. For the other two bromo-compounds, requiring higher temperatures, equipment depicted as Figs. 1 and 2 by Le Fèvre, Ross, and Smythe was used, together with the oven and glass-diaphragm gauge mentioned by Freeman, Le Fèvre, and Maramba ( $J$., 1952, 1649). In all cases polarisations were estimated relatively to $P_{\mathrm{co}_{2}}$ (taken as temperature invariant and equal to $7.341 \mathrm{c} . \mathrm{c}$.; cf. Le Fèvre and Russell, Trans. Faraday Soc., 1947, 43, 374) via the equation :

$$
P_{\mathrm{gas}}=7 \cdot 341(\delta \mathrm{C} / p)_{p=0}^{\mathrm{gan}} /(\delta \mathrm{C} / p)_{p=0}^{\mathrm{CO}_{2}}
$$

Experimental procedures and methods of calculation were as described by Le Fèvre and Russell (loc. cit.). Essential observations are listed in Table 2.

## Table 2. Polarisation-temperature relations.

| $T,{ }^{\circ} \mathrm{K}$ | $(\delta C / p)_{p=0}^{\mathrm{gab}}$ | $P$, с.c. (obs.) | $P$, с.c. (calc.) | $p$, range in cm. | No. of obsns. | $T,{ }^{\circ} \mathrm{K}$ | $(\delta C / p)_{p=0}^{\mathrm{gas}}$ | $P$, c.c. (obs.) | $P$ c.c. (calc.) | $p$, range in cm. | No. of obsns. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Methyl bromide * |  |  |  |  |  |  |  |  |  |  |  |
| $294 \cdot 7$ | 88.29 | 83.33 | 83.25 | 19-47 | 11 | 374.0 | $57 \cdot 13$ | 68.58 | 68.71 | 27-51 | 10 |
| $339 \cdot 0$ | $68 \cdot 27$ | $74 \cdot 22$ | $74 \cdot 29$ | 17-47 | 10 | $404 \cdot 8$ | $49 \cdot 78$ | $64 \cdot 72$ | $64 \cdot 60$ | 21-52 | 12 |
| 350.5 | 64-36 | 72.36 | 72.34 | 18-50 | 10 | $455 \cdot 6$ | $40 \cdot 31$ | 59.06 | 59.04 | 16-59 | 10 |
| * Standardising equation : $(\delta C / p)_{p=0}^{\mathrm{CO}_{\mathbf{2}}}=(2307.4 / T)-0.054$. |  |  |  |  |  |  |  |  |  |  |  |
| Methylene dibromide $\dagger$ |  |  |  |  |  |  |  |  |  |  |  |
| 362.9 | $40 \cdot 36$ | 57.07 | 56.89 | 10--20 | 10 | 448.7 | 28.59 | 50.09 | $50 \cdot 39$ | 9-43 | 12 |
| 378.8 | 37.60 | 55.52 | $55 \cdot 46$ | 16-30 | 11 | 488.0 | $25 \cdot 18$ | $48 \cdot 04$ | $48 \cdot 17$ | 9-31 | 11 |
| $397 \cdot 0$ | 34.90 | 54.03 | 53.97 | 13-39 | 10 | $523 \cdot 6$ | $22 \cdot 87$ | 46.84 | $46 \cdot 46$ | 11-57 | 12 |
| 419.0 | $31 \cdot 86$ | 52.08 | 52.34 | 13-36 | 11 |  |  |  |  |  |  |
| Bromoform $\dagger$ |  |  |  |  |  |  |  |  |  |  |  |
| 394-2 | 29.31 | $45 \cdot 06$ | $44 \cdot 87$ | 4-10 | 11 | $452 \cdot 4$ | $24 \cdot 16$ | $42 \cdot 69$ | 42.90 | 7-26 | 8 |
| 426.5 | 26.50 | $44 \cdot 11$ | $43 \cdot 72$ | 11-30 | 9 | $466 \cdot 2$ | 22.98 | $41 \cdot 86$ | $42 \cdot 52$ | 5-32 | 12 |
| 434.1 | $25 \cdot 59$ | $43 \cdot 37$ | $43 \cdot 47$ | 13-35 | 13 | $494 \cdot 0$ | 21.96 | $42 \cdot 41$ | 41.79 | 5-52 | 11 |
| 436.5 | $25 \cdot 30$ | $43 \cdot 11$ | $43 \cdot 39$ | 5-24 | 12 | $507 \cdot 0$ | 20.94 | 41-52 | 41.48 | 6-29 | 12 |
| $\dagger$ Standardising equation : $(\delta C / p)_{p=0}^{\mathrm{CO}_{2}}=(1901 / T)-0.047$. |  |  |  |  |  |  |  |  |  |  |  |

In each of the three cases the observed polarisations ( $P$, obs.) were fitted by the method of least squares to " Debye" equations of the form $P=A+B / T$; the figures under $P$, calc. have been computed from the constants $A$ and $B$ so obtained. If for a given set $P$, obs. $-P$, calc. $=\Delta$, then the standard errors in $A$ and $B$ may be estimated by the formule cited for this purpose by Harris, Le Fèvre, and Sullivan (loc. cit.). Thus our results appear as follows :

$$
\begin{array}{rl}
\mathrm{CH}_{3} \mathrm{Br}: & P=(14.7 \pm 0.4)+(20,205 \pm 113) / T ; \mu_{\text {gas }}=1.821 \pm 0.005 \mathrm{D} . \\
\mathrm{CH}_{2} \mathrm{Br}_{2}: ~ & P=\left(22 \cdot 9 \pm 0 \cdot 8_{4}\right)+(12,330 \pm 352) / T ; \mu_{\text {gas }}=1.42 \pm 0.02 \mathrm{D} . \\
\mathrm{CHBr}_{3}: P & =(29.6 \pm 2 \cdot 0)+(6005 \pm 286) / T ; \mu_{328}=0.99 \pm 0.2 \mathrm{D} .
\end{array}
$$

In Table 3 these values are compared with those recorded previously.
Measurements on Solutions in Benzene. -These have been made at $25^{\circ}$ by the usual procedures (Le Fèvre, " Dipole Moments," Methuen, 2nd Edn., 1948, pp. 31-42), the apparatus described by Le Fèvre and Ross ( $J$., 1950, 283) and by Calderbank and Le Fèvre ( $J ., 1948$, 1949) being used. The methyl bromide was dissolved in benzene as was sulphur dioxide by Le Fèvre and Ross, and similar methods were adopted for transferring the solutions to the cell or pyknometer. Calculations and symbols used have been explained previously (Le Fèvre, Trans. Faraday Soc., 1950, 46, 1, and footnote to Buckingham and Le Fèvre, J., 1952, 1932); however, in the case of methylene dibromide it seemed necessary to assume that both $\varepsilon_{12}-\varepsilon_{1}$ and

Table 3. Comparison between present and previous measurements.

| $\mu(\mathrm{D})$ | Results as : | No. of temps. studied | Author(s) and ref. |
| :---: | :---: | :---: | :---: |
| Methyl bromide |  |  |  |
| 1.82 | $P=14 \cdot 7+20,205 / T$ | 6 | Present work |
| $1 \cdot 82$ | - | - | (Calc. from Pohrt, Ann. Physik, 1913, 42, 569, by Höjendahl, Physikal. Z., 1929, 30, 392) |
| 1.79 | Individual polarisations | 5 | Mahanti, ibid., 1930, 31, 546 |
| 1.78 | $P=15 \cdot 40 \pm 19,580 / T$ | 5 | Smyth and McAlpine, J. Chem. Physics., 1934, 2, 499 |
| 1.75 | Individual polarisations | 5 | Mahanti, Phil. Mag., 1935, 20, 274 |
| $1 \cdot 79$ | Individual polarisations | 4 | Groves and Sugden, J., 1937, 158 |
| $1 \cdot 797$ | Stark splitting | - | Shulman, Dailey, and Townes, Phys. Rev., 1950, 78, 145 |
| Methylene dibromide |  |  |  |
| $1 \cdot 42$ | $P=22 \cdot 9+12,330 / T$ | 7 | Present work |
| $1 \cdot 43$ | $P=23 \cdot 51 \pm 12,445 / T$ | 5 | Maryott, Hobbs, and Gross, J. Amer. Chem. Soc., 1941, 63, 659 |
|  |  |  | romoform |
| 0.99 | $P=29 \cdot 6 \pm 6005 / T$ | 8 | Present work |

$d_{12}-d_{1}$ were represented by $a w_{2}+b w_{2}{ }^{2}$, and to obtain the " best possible" figures for a, i.e., $\left(\alpha \varepsilon_{1}\right)_{\infty=0}$ and $\left(\beta d_{1}\right)_{\infty=0}$, by the method of least squares (cf. Harris, Le Fèvre, and Sullivan, J.. 1953, 1622). Table 4 sets out the measurements; the values of $\mu$ shown have been computed with the help of the distortion polarisations ascertained during the present work.

Table 4. Dielectric constants and densities of solutions in benzene at $25^{\circ}$.

| $10^{\prime} w_{2}$ | $\varepsilon_{12}$ | $\alpha E_{1}$ | $\left(d_{4}^{25}\right)_{12}$ | $\beta$ | $10^{5} w_{2}$ | $\varepsilon_{12}$ | $\boldsymbol{x}_{1}$ | $\left(d_{4}^{25}\right)_{12}$ | $\beta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $2 \cdot 2725$ | - | $0 \cdot 87378$ |  |  |  |  |  |  |
| Methyl bromide |  |  |  |  |  |  |  |  |  |
| 23,282 | $2 \cdot 3387$ | $2 \cdot 84$ | 0.88288 | 0.447 | 40,543 | $2 \cdot 3839$ | 2.75 | 0.88980 | 0.452 |
| 33,397 | 2.3655 | $2 \cdot 78$ | $0 \cdot 88682$ | $0 \cdot 447$ | 69,156 | $2 \cdot 4624$ | $2 \cdot 89$ | $0 \cdot 90048$ | $0 \cdot 442$ |
| 39,520 | $2 \cdot 3819$ | $2 \cdot 77$ | $0 \cdot 88940$ | 0.452 | 83,759 | $2 \cdot 5008$ | 2.73 | $0 \cdot 90610$ | 0.442 |
| Whence mean $\alpha \varepsilon_{1}=2.79$; mean $\beta=0.447 ;{ }_{\infty} P_{2}=67.7 \pm 1.25$ c.c. ; $\mu_{\mathrm{C}_{6} \mathrm{H}_{6}}=1.61 \pm 0.03 \mathrm{~d}$. |  |  |  |  |  |  |  |  |  |
| Methylene bromide |  |  |  |  |  |  |  |  |  |
| 20,952 | 2.2999 | 1.322 | 0.88570 | 0.656 | 55,668 | $2 \cdot 3461$ | 1.322 | 0.90615 | 0.665 |
| 40,378 | $2 \cdot 3256$ | 1.315 | 0.89708 | 0.660 | 65,802 | $2 \cdot 3590$ | 1.335 | 0.91161 | 0.668 |
| 40,616 | $2 \cdot 3260$ | 1.317 | 0.89716 | 0.659 | 73,825 | $2 \cdot 3724$ | $1 \cdot 349$ | 0.91757 | 0.678 |
| $\begin{gathered} \text { Whence } \alpha \varepsilon_{1}=1.28_{2}+0.85_{6} w_{2} ; \beta=0.637+0.539 w_{2} ;{ }_{\infty} P_{2}=63.4 \pm 0.6 \text { c.c. ; } \mu_{\mathrm{C}_{6} \mathrm{H}_{6}}=1.41 \\ \pm 0.02_{5} \mathrm{D} . \end{gathered}$ |  |  |  |  |  |  |  |  |  |
| Bromoform |  |  |  |  |  |  |  |  |  |
| 16,209 | $2 \cdot 2812$ | 0.537 | 0.88374 | $0 \cdot 703$ | 41,117 | 2.2949 | 0.549 | $0 \cdot 89951$ | 0.716 |
| 18,952 | $2 \cdot 2827$ | 0.538 | 0.88542 | $0 \cdot 703$ | 48,205 | $2 \cdot 2988$ | 0.546 | 0.90409 | 0.720 |
| 31,292 | $2 \cdot 2891$ | 0.531 | 0.89355 | 0.723 | 54,404 | $2 \cdot 3016$ | 0.535 | 0.90835 | 0.727 |
| 32,423 | $2 \cdot 2898$ | 0.534 | 0.89443 | 0.729 | 60,042 | $2 \cdot 3048$ | 0.538 | 0.91188 | 0.726 |
| 37,157 | 2.2922 | 0.530 | $0 \cdot 89728$ | $0 \cdot 724$ | 72,981 | $2 \cdot 3121$ | 0.543 | 0.92059 | 0.734 |

The moments now recorded are compared in Table 5 with others previously reported by Müller and Sack (Physikal. Z., 1930, 31, 815) and Le Fèvre and Russell (J., 1936, 491).

Table 5. Apparent moments in benzene.

|  | Solute | Temp. | No. of solns. | $\mu, \mathrm{D}^{*}$ | $\mu, \mathrm{D} \dagger$ | Authors |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{CH}_{3} \mathrm{Br} \\ & \mathrm{CH}_{2} \mathrm{Br}_{2} \end{aligned}$ |  | $25^{\circ}$ | 6 | 1.61 | - | Present |
|  |  | 25 | 6 | 1.41 |  | Mül' |
|  |  | 25 | 2 | $1 \cdot 37$ | $\begin{gathered} 1 \cdot 38 \\ (21 \cdot 5) \end{gathered}$ | Müller and Sack |
| $\mathrm{CHBr}_{3}$ |  | 25 | 10 | 1.02 | - | Present |
|  |  | 25 | 4 | 1.02 | $\begin{gathered} 0 \cdot 99 \\ (30 \cdot 5) \end{gathered}$ | Müller and Sack |
|  |  | 25 | 2 | 1.07 | $\begin{aligned} & 1 \cdot 06 \\ & (30) \end{aligned}$ | Le Fèvre and Russell |

* Using the ${ }_{\mathrm{D}} P$ from measurements on gases.
$\dagger$ Using the molecular refractions shown in parentheses.

Discussion.-Table 6 contains the molecular constants and values of $\mu_{\mathrm{c}_{3} \underline{H}_{4}} / \mu_{\text {gas }}$ predicted by equations (1), (2), (3), and (4) of the paper of Buckingham and Le Fèvre (loc.cit.), the symbols being those defined and employed by these authors. The $\left(n^{2}\right)_{D}^{25}$ figures, other than that of benzene for which $\left(n^{2}\right)_{D}^{25}=2 \cdot 2417$, have been calculated from Vogel's refractivities ( $J$., 1948, 1842 ) and the densities listed in Table 7. The $\xi$ 's were determined from the $A$ 's, $B$ 's, and $C$ 's by referring to Osborn's graphs (Physical Rev., 1945, 67, 351). When applying equation (4), i.e., Ross and Sack's expression (Proc. Phys. Soc., 1950, B, 63, 803), $n^{2}$ eff. values (from ${ }_{\mathrm{D}} P_{2}$ and $d_{2}$ ) of $2.044,2.447$, and 2.525 respectively were used; the datum for bromoform, in comparison with the value of $\left(n^{2}\right)_{D}^{25}$ for that compound, seems possibly a little low.

Table 6.
$\mu_{C_{6}} \mathrm{H}_{6} / \mu_{\mathrm{g} x_{s}}$ calc. by equation:


From Table 6 it may be seen that each of the equations (1)-(4) predicts ratios which are essentially of the correct orders; nos. (2), (3), and (4) appear on the whole preferable to (1)a conclusion already drawn by Buckingham and Le Fèvre (loc. cit.).

Calculation of $\mu_{\text {gas }}$ from Measurements on Pure Liquids.-The shape factors and values of $\left(n^{2}\right)_{\mathrm{D}}^{25}$ of Table 6 being used in conjunction with appropriate $\varepsilon^{\prime}$ 's and $d^{\prime}$ 's from the literature, $\mu_{\text {gas }}$ has been estimated from $\mu_{\text {liq. }}$ via equations (5), (6), and (7) of Buckingham and Le Fèvre. Results are in Table 7, and it is evident that equations (5) and (6) are most satisfactory for these molecules, and superior to Onsager's equation (7).

TAble 7. Calculation of $\mu_{\text {gas }}$ from $\mu_{\text {iqiq. }}$.

| Liquid | $\varepsilon$ | $d$ | $\mu_{\text {liq. }}$ | $\mu_{\text {gas }}$, calc. by eqn. : |  |  | $\mu_{\text {gas }}$, found |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | (5) | (6) | (7) |  |
| $\mathrm{CH}_{3} \mathrm{Br}$ | $9 \cdot 0_{2}{ }^{1}$ | $1 \cdot 668{ }^{1}$ | $1 \cdot 14$ | $1 \cdot 84$ | 1.84 | $1 \cdot 63$ | 1.82 |
| $\mathrm{CH}_{2} \mathrm{Br}_{2}$ | $7 \cdot 22_{5} 1,2$ | $2 \cdot 470{ }^{3}$ | $1 \cdot 10$ | 1.43 | 1.42 | 1.39 | 1.42 |
| $\mathrm{CHBr}_{3} \ldots$. | $4 \cdot 398{ }^{4}$ | $2 \cdot 878{ }^{5}$ | $0 \cdot 91$ | 0.97 | 0.98 | 1.01 | 0.99 |

${ }^{1}$ Extrapolated from Morgan and Lowry, J. Phys. Chem., 1930, 34, 2385. ${ }^{2}$ Interpolated value from Smyth and Rogers, J. Amer. Chem. Soc., 1930, 52, 2227. ${ }^{3}$ Perkin, J., 1884, 45, 520. ${ }^{4}$ Le Fèvre and Le Fèvre, J., 1935, 1747. ${ }^{5}$ Sherman and Sherman, J. Amer. Chem. Soc., 1928, 50, 1119.

